31 research outputs found

    Gauge fields in (A)dS within the unfolded approach: algebraic aspects

    Full text link
    It has recently been shown that generalized connections of the (A)dS space symmetry algebra provide an effective geometric and algebraic framework for all types of gauge fields in (A)dS, both for massless and partially-massless. The equations of motion are equipped with a nilpotent operator called σ\sigma_- whose cohomology groups correspond to the dynamically relevant quantities like differential gauge parameters, dynamical fields, gauge invariant field equations, Bianchi identities etc. In the paper the σ\sigma_--cohomology is computed for all gauge theories of this type and the field-theoretical interpretation is discussed. In the simplest cases the σ\sigma_--cohomology is equivalent to the ordinary Lie algebra cohomology.Comment: 59 pages, replaced with revised verio

    Higher Spin Gauge Theory and Holography: The Three-Point Functions

    Full text link
    In this paper we calculate the tree level three-point functions of Vasiliev's higher spin gauge theory in AdS4 and find agreement with the correlators of the free field theory of N massless scalars in three dimensions in the O(N) singlet sector. This provides substantial evidence that Vasiliev theory is dual to the free field theory, thus verifying a conjecture of Klebanov and Polyakov. We also find agreement with the critical O(N) vector model, when the bulk scalar field is subject to the alternative boundary condition such that its dual operator has classical dimension 2.Comment: 90 pages, 5 figures; v4, minor changes in the introductio

    Parent formulation at the Lagrangian level

    Full text link
    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV--BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected, references adde

    First order parent formulation for generic gauge field theories

    Full text link
    We show how a generic gauge field theory described by a BRST differential can systematically be reformulated as a first order parent system whose spacetime part is determined by the de Rham differential. In the spirit of Vasiliev's unfolded approach, this is done by extending the original space of fields so as to include their derivatives as new independent fields together with associated form fields. Through the inclusion of the antifield dependent part of the BRST differential, the parent formulation can be used both for on and off-shell formulations. For diffeomorphism invariant models, the parent formulation can be reformulated as an AKSZ-type sigma model. Several examples, such as the relativistic particle, parametrized theories, Yang-Mills theory, general relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction

    Fermionic Coset, Critical Level W^(2)_4-Algebra and Higher Spins

    Full text link
    The fermionic coset is a limit of the pure spinor formulation of the AdS5xS5 sigma model as well as a limit of a nonlinear topological A-model, introduced by Berkovits. We study the latter, especially its symmetries, and map them to higher spin algebras. We show the following. The linear A-model possesses affine \AKMSA{pgl}{4}{4}_0 symmetry at critical level and its \AKMSA{psl}{4}{4}_0 current-current perturbation is the nonlinear model. We find that the perturbation preserves W4(2)\mathcal{W}^{(2)}_4-algebra symmetry at critical level. There is a topological algebra associated to \AKMSA{pgl}{4}{4}_0 with the properties that the perturbation is BRST-exact. Further, the BRST-cohomology contains world-sheet supersymmetric symplectic fermions and the non-trivial generators of the W4(2)\mathcal{W}^{(2)}_4-algebra. The Zhu functor maps the linear model to a higher spin theory. We analyze its \SLSA{psl}{4}{4} action and find finite dimensional short multiplets.Comment: 25 page

    Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields

    Full text link
    Conformal totally symmetric arbitrary spin bosonic fields in flat space-time of even dimension greater than or equal to four are studied. Second-derivative (ordinary-derivative) formulation for such fields is developed. We obtain gauge invariant Lagrangian and the corresponding gauge transformations. Gauge symmetries are realized by involving the Stueckelberg and auxiliary fields. Realization of global conformal boost symmetries on conformal gauge fields is obtained. Modified de Donder gauge condition and de Donder-Stueckelberg gauge condition are introduced. Using the de Donder-Stueckelberg gauge frame, equivalence of the ordinary-derivative and higher-derivative approaches is demonstrated. On-shell degrees of freedom of the arbitrary spin conformal field are analyzed. Ordinary-derivative light-cone gauge Lagrangian of conformal fields is also presented. Interrelations between the ordinary-derivative gauge invariant formulation of conformal fields and the gauge invariant formulation of massive fields are discussed.Comment: 51 pages, v2: Results and conclusions of v1 unchanged. In Sec.3, brief review of higher-derivative approaches added. In Sec.4, new representations for Lagrangian, modified de Donder gauge, and de Donder-Stueckelberg gauge added. In Sec.5, discussion of interrelations between the ordinary-derivative and higher-derivative approaches added. Appendices A,B,C,D and references adde
    corecore